skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Hongyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Incorporating photonic crystals with nanoplasmonic building blocks gives rise to novel optoelectronic properties that promise designing advanced multifunctional materials and electronics. Herein, the free‐standing chiral plasmonic composite films are designed by coassembling anisotropic plasmonic gold nanorods (GNRs) and rod‐like cellulose nanocrystals (CNCs). The effects of surface charge and concentration of the GNRs on the structure and optical properties of the CNC/GNR films are examined within this study. The CNC/GNR hybrid films retain the photonic characteristic of the CNCs host while concomitantly possessing the plasmonic resonance of GNRs. The negatively charged GNRs distribute uniformly in the layered CNCs host, inducing strong electrostatic repulsion among the CNCs and thus promoting the formation of a larger helical pitch than the case without GNRs. The positively charged GNRs decrease the chiroptical activity in the composite films with increasing the concentration of GNR, which is confirmed by the circular dichroism spectra. Notably, the surface plasmon resonances of GNRs enhance the fluorescence emission, which has been demonstrated by surface‐enhanced fluorescence signals in this work. This study sheds light on fabricating functional chiral plasmonic composite films with enhanced chiral plasmonics by utilizing CNCs as a dynamic chiral nematic template and adjusting surface charges. 
    more » « less